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ABSTRACT
Network alignment or graph matching is the classic problem of

finding matching vertices between two graphs with applications in

network de-anonymization and bioinformatics. There exist a wide

variety of algorithms for it, but a challenging scenario for all of the

algorithms is aligning two networks without any information about

which nodes might be good matches. In this case, the vast majority

of principled algorithms demand quadratic memory in the size of

the graphs. We show that one such method—the recently proposed

and theoretically grounded EigenAlign algorithm—admits a novel

implementation which requires memory that is linear in the size

of the graphs. The key step to this insight is identifying low-rank

structure in the node-similarity matrix used by EigenAlign for de-

termining matches. With an exact, closed-form low-rank structure,

we then solve a maximum weight bipartite matching problem on

that low-rank matrix to produce the matching between the graphs.

For this task, we show a new, a-posteriori, approximation bound

for a simple algorithm to approximate a maximum weight bipartite

matching problem on a low-rank matrix. The combination of our

two new methods then enables us to tackle much larger network

alignment problems than previously possible and to do so quickly.

Problems that take hours with existing methods take only seconds

with our new algorithm. We thoroughly validate our low-rank algo-

rithm against the original EigenAlign approach. We also compare

a variety of existing algorithms on problems in bioinformatics and

social networks. Our approach can also be combined with existing

algorithms to improve their performance and speed.

KEYWORDS
network alignment; graph matching; low rank matrix; low-rank

bipartite matching

ACM Reference Format:
Huda Nassar, Nate Veldt, Shahin Mohammadi, Ananth Grama, and David F.

Gleich. 2018. Low Rank Spectral Network Alignment. InWWW 2018: The

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5639-8/18/04.

https://doi.org/10.1145/3178876.3186128

2018 Web Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3178876.3186128

1 INTRODUCTION AND MOTIVATION
Network alignment is the problem of pairing nodes across two dif-

ferent graphs in a way that preserves edge structure and highlights

similarities between the networks. The node pairings can either be

one-to-one or many-to-many. While the methods we propose are

amenable to both settings with some modification, we focus on the

one-to-one case as it has the most extensive literature. Applications

of network alignment include (i) finding similar nodes in social

networks, which uncovers information about one or both of the

paired nodes, and can help with tailoring advertisements and sug-

gesting activities for similar users in a network; (ii) social-network

de-anonymization [10]; and (iii) pattern matching in graphs [3].

One very popular example of this problem is the alignment of

protein-protein interaction networks in biology [6, 14, 27]. Often

in biology one can extract valuable knowledge about proteins for

which little information is known by aligning a protein network

with another protein network that has been studied more. By doing

so one can draw conclusions about proteins in the first network by

understanding their similarities to proteins in the second.

There are two major approaches to network alignment prob-

lems [1]: local network alignment, where the goal is to find local

regions of the graph that are similar to any given node, and global

network alignment, where the goal is to understand how two large

graphs would align to each other. Many approaches to network

alignment rely on solving an optimization problem to compute

what amounts to a topological similarity score between pairs of

nodes in the two networks. Here, we focus on global alignment

with one-to-one matches between the two graphs.

Some applications also come with prior information about which

nodes in one networkmay be goodmatches for nodes of another net-

work, which implicitly imposes a restriction on the number of the

similarity scores that must be computed and stored in practice [2].

However, for problems that lack this prior, the data requirement

for storing the similarity scores is quadratic, which severely limits

the scalability of this class of approaches to solve the problem. For

instance, methods such as the Lagrangian relaxation method of

Klau et al. [7] require at least quadratic memory. There do exist
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memory-scalable heuristics for solving network alignment prob-

lems with no prior, including the GHOST procedure of Patro et

al. [24], or the GRAAL algorithm of Kuchaieve et al [12] and its vari-

ants. However, these usually involve cubic or worse computation

in terms of vertex neighborhoods in the graph (e.g. enumeration of

all 5-node graphlets within a local region).

One principled approach that avoids the quadratic memory re-

quirement is the Network Similarity Decomposition (NSD) [8, 9, 22],

which provides a useful low-rank decomposition of a specific simi-

larity matrix based on the IsoRank method [27]. This method en-

ables alignments to be computed between extremely large networks.

However, there have been many improvements to network align-

ment methods since the publication of IsoRank.

A recent innovation is a method based on eigenvectors called

EigenAlign. The EigenAlign method uses the dominant eigenvector

of a matrix related to the product-graph between the two networks

in order to estimate the similarity. The eigenvector information

is rounded into a matching between the vertices of the graphs by

solving a maximum-weight bipartite matching problem on a dense

bipartite graph [5]. The IsoRank method is also based on eigenvec-

tors, or more specifically, the PageRank vector of the product-graph

of the two networks was used for the same purpose [27]. In contrast,

a key innovation of EigenAlign is that it explicitly models nodes

that may not have a match in the network. In this way, it is able

to provably align many simple graph models such as Erdős-Rényi

when the graphs do not have too much noise. This gives it a firm

theoretical basis although it still suffers from the quadratic memory
requirement.

In our manuscript, we highlight a number of innovations that

enable the EigenAlign methodology to work without the quadratic

memory requirement. We first show that the EigenAlign solution

can be expressed via low-rank factors, and we can compute these

low-rank factors exactly and explicitly using a simple procedure.

A challenge in using the low-rank information provided by our

new method is that there are only a few ideas on how to use the

low-rank structure of the similarity scores in the matching step [15,

22]. We contribute a new analysis of a simple idea to use the low-

rank structure that gives a computable a-posteriori approximation

guarantee. In practice, this approximation guarantee is extremely

good: around 1.1. Such a procedure should enable further low-rank

applications beyond just network alignment.

Our contributions.
• An explicit expression for the solution of the EigenAlign eigen-

vector as a low-rank matrix (Theorem 3.1).

• An O (n logn) method that will solve a maximum-weight bi-

partite matching problem on a low-rank matrix with an a-posteriori

approximation guarantee (Algorithm 3, Theorem 4.2). In practice,

these approximation guarantees are better than 1.1 for our experi-

ments (Figure 7). This improves recent work in [22], which gave a

simple k-approximation algorithm, where k is the rank.

• A thorough evaluation of our methodology to show that there

appears to be little difference between the results of our low-rank

methods and the original EigenAlign (Section 5.1), and our methods

are more scalable.

• A demonstration that our low-rank methods can be combined

with existing network alignment methods to yield better quality

results (Section 5.2).

• A demonstration that the methods are sufficiently scalable to

be run for all pairs of networks induced by the vertex neighborhoods

of every two connected nodes in a large graph. That is, we seek

to align two vertex neighborhoods together whenever the vertices

have an edge. To validate the alignments, we show that these track

the Jaccard similarity between the set of neighbors. (Figure 10).

2 NETWORK ALIGNMENT FORMULATIONS
AND CURRENT TECHNIQUES

We now review the state of network alignment algorithms and our

specific setting and objective. A helpful illustration is shown in

Figure 1.

2.1 The canonical network alignment problem
For the network alignment problem, we are given two graphs GA
and GB with adjacency matrices A and B. The goal is to produce a

one-to-one mapping between nodes of GA and GB that preserves

topological similarities between the networks [3]. In some cases we

additionally receive information about which nodes in one network

can be paired with nodes in the other. This additional information

is presented in the form of a bipartite graph whose edge weights

are stored in a matrix L; if Luv > 0, this indicates outside evidence

that node u in GA should be matched to node v in GB . We call

this outside evidence a prior on the alignment. When a prior is

present, the prior and topological information are taken together

to determine an alignment.

More formally, we seek a binary matrix P that encodes a match-

ing between the nodes of the networks and maximizes one of a few

possible objective functions discussed below. The matrix P encodes

a matching when it satisfies the constraints

Pu,v =



1 u is matched with v

0 otherwise.
,

∑
u Pu,v ≤ 1 for all v,∑
v Pu,v ≤ 1 for all u .

The inequality constraints guarantee that a node in the first network

is only matched with one or zero nodes in the other network.

2.2 Objective functions for network alignment
The classic formulation of the problem seeks a matrix P that max-

imizes the number of overlapping edges between GA and GB , i.e.

the number of adjacent node pairs (iA, jA ) in GA that are mapped

to an adjacent node pair (i ′B , j
′
B ) inGB . This results in the following

integer quadratic program:

maximize

P

∑
i j [P

TAP]i j [B]i j

subject to

∑
u Pu,v ≤ 1 for all v∑
v Pu,v ≤ 1 for all u

Pu,v ∈ {0,1}

(1)

Recent variations of this objective include an extension to overlap-

ping triangles [21], an extension that combines edge overlapping

with prior similarity scores [2, 27], as well as an extension specific

to bipartite graphs [11].

2.3 The EigenAlign Algorithm
One of the drawbacks to the previous objective functions is there

is no downside to matches that do not produce an overlap, i.e.
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The goal of network alignment 

is to find a match between the 

nodes of two networks without 

any hints or prior information.  

Our method uses overlap, non-

informative, and conflict matching 

scores to compute a low-rank form 

of an eigenvector of a massive 

matrix of all pairwise alignments.

Overlap

Non-informative

Conflict 

Figure 1: Our setup for network alignment follows
Feizi et. al. [5], where we seek to align two networks
without any other metadata. Possible alignments between
pairs of any nodes (i , j) in GA and (i ′, j′) in GB are scored
based on one of three cases and assembled into a massive,
but highly structured, alignment matrixM .

edges in GA that are mapped to non-edges in GB or vice versa.

Neither do these objective functions consider the case where non-

edges in GA are mapped to non-edges in GB . The first problem

was recognized in [25] which proposed an SDP-based method to

minimize the number of conflicting matches. More recently, the

EigenAlign objective [5] included explicit terms for these three

cases: overlaps, non-informative matches, and conflicts, see Figure 1.

The alignment score corresponding to P in this case is

AlignmentScore(P ) =

sO (# overlaps) + sN (# non-informatives) + sC (# conflicts) (2)

where sO , sN , and sC areweights for overlaps, non-informatives and

conflicts. These constants should be chosen such that sO > sN > sC .
By setting sN and sC to zero we recover the ordinary notion of

maximizing the number of overlaps. Although it may seem strange

to maximize the number of conflicts, when the graphs have very

different sizes or numbers of edges, this term acts as regularization.

The important piece is that non-informatives are more valuable than

conflicts.

This objective can be expressed formally by first introducing

a massive alignment matrix M defined as follows: for all pairs of

nodes iA, jA in GA and all pairs i ′B , j
′
B in GB , if P (iA,i

′
B ) = 1 and

P (jA, j
′
B ) = 1, then

M[(iA,i
′
B ), (jA, j

′
B )] =




sO , if (iA, jA ), (i
′
B , j
′
B ) are overlaps

sN , if (iA, jA ), (i
′
B , j
′
B ) are noninformatives

sC , if (iA, jA ), (i
′
B , j
′
B ) are conflicts.

We are abusing notations a bit in this definition and using pairs

iA and i ′B to index the rows and columns of this matrix. For a

straightforward, canonical ordering of these pairs iA,i
′
B , the matrix

M can be rewritten in terms of the adjacency matrices of A and B:

M = c
1
(B ⊗ A) + c

2
(EB ⊗ A) + c2 (B ⊗ EA ) + c3 (EB ⊗ EA )

where ⊗ denotes the Kronecker product, c
1
= sO + sN − 2sC ,c2 =

sC − sN ,c3 = sN and EA, and EB are the matrices of all ones and of

the same size as A and B respectively. The matrixM is symmetric

as long asGA andGB are undirected. (There are directed extensions

discussed in [5], but we don’t consider them here.)

Maximizing the alignment score (2) is then equivalent to the

following quadratic assignment problem:

maximize

y
yTMy

subject to yi ∈ {0,1}∑
u y[u,v] ≤ 1 for all v ∈ VB∑
v y[u,v] ≤ 1 for all u ∈ VA

(3)

where VA and VB are the node sets of GA and GB respectively. The

vector y is really just the vector of data representing the matching

matrix P , and the constraints are just the translation of thematching

constraints from (1).

An empirically and theoretically successful method for optimiz-

ing this objective is to solve an eigenvector equation instead of

the quadratic program. This is exactly the approach of EigenAlign,

which computes network alignments using the following two steps:

(1) Find the eigenvector x ofM that corresponds to the eigen-

value of largest magnitude. Note,M is of dimension nAnB × nAnB ,
where nA and nB are the number of nodes in GA and GB respec-

tively; so, the eigenvector will be of dimension nAnB , and can be

reshaped into an nA × nB matrix X where each entry represents

a score for every pair of nodes between the two graphs. We call
this a similarity matrix because it reflects the topological similarity
between vertices of GA and GB .

(2) Run a bipartite matching algorithm on the similarity matrix

X that maximizes the total weight of the final alignment.

Our contribution. In our work we extend the foundation laid by

EigenAlign by considering improvements to both steps. We first

show that the similarity matrix X can be accurately represented

through an exact low-rank factorization. This allows us to avoid

the quadratic memory requirement of EigenAlign. We then present

several new fast techniques for bipartite matching problems on

low-rank matrices. Together these improvements yield a low-rank

EigenAlign algorithm that is far more scalable in practice.

2.4 Summary of other techniques
Our work shares a number of similarities with the Network Simi-

larity Decomposition (NSD) [8], a technique based on a low-rank

factorization of a different similarity matrix, the matrix used by the

IsoRank algorithm [27]. The authors of [8] show that this decompo-

sition can be obtained by performing calculations separately on the

two graphs, which significantly speeds up the calculation of similar-

ity scores between nodes. Another procedure designed for aligning

networks without prior information is the the Graph Alignment

tool (GRAAL) [12]. GRAAL computes the so-called graphlet degree
signature for each node, a vector that generalizes node degree and

represents the topological structure of a node’s local neighborhood.

The method measures distances between graphlet degrees to obtain

similarity scores, and then uses a greedy seed and extend procedure

for matching nodes across two networks based on the scores. A

number of algorithms related to this method have been introduced,

which extend the original technique by considering other measures

of topological similarity as well as different approaches to rounding
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similarity scores into an alignment [13, 17, 18, 20]. The seed-and-

extend alignment procedure was also employed by the GHOST algo-

rithm [24], which computes topological similarity scores based on a

novel spectral signature for each node. Recently, [21] introduced the

notion of finding an alignment that maximizes the number of pre-

served higher order structures (such as triangles) across networks.

This results in an integer programming problem that can be ap-

proximated by the Triangular Alignment algorithm (TAME), which

obtains similarity scores by solving a tensor eigenvalue problem

that relaxes the original objective.

Alternative approaches to improve network alignment include

active methods that allow users to select matches from a host of

potential near equal matches [16].

3 LOW RANK FACTORS OF EIGENALIGN
The first step of the EigenAlign algorithm is to compute the dom-

inant eigenvector of the symmetric matrixM . Feizi et al. suggest

obtaining a similarity matrix X by first forming M , performing

a power iteration on this matrix, and reshaping the final output

eigenvector x into X [5]. Because of the Kronecker structure inM ,

this can equivalently be formulated directly as the matrix X that

satisfies:

maximize

X
X • (c

1
AXBT + c

2
AXET + c

2
EXBT + c

3
EXET )

subject to ∥X ∥F = 1,X ∈ RnA×nB .
(4)

In this expression, X •Y =
∑
i j Xi jYi j is the matrix inner-product

and the translation from the eigenvector of M follows from the

Kronecker product property vec(AXBT ) = (B ⊗ A)vec(X ). We

also dropped the dimensions from the matrices E of all ones. The

eigenvector ofM is the result of the vec operation on the matrix X ,

which converts the matrix into a vector by concatenating columns.

Our first major contribution is to show that if the matrix X is

estimated with the power-method starting from a rank 1 matrix,

then the kth iteration of the power method results in a rank k + 1
matrix that we can explicitly and exactly compute.

3.1 A Four Factor Low-Rank Decomposition
In the matrix form of problem (4), one step of the power method

corresponds to the iteration:

Xk+1 = c1AXkB
T
+ c

2
AXkE

T
+ c

2
EXkB

T
+ c

3
EXkE

T . (5)

If we begin with a rank-1 matrix X
0
= uvT where u ∈ RnA and

v ∈ RnB and letU
0
= u, and V

0
= v so that X

0
= U

0
VT
0
. We will

first prove by induction that Xk can be written as

Xk = U kV
T
k (6)

where

U k = [c
1
AU k−1 | c2EU k−1 | c2AU k−1 | c3EU k−1]

V k = [BV k−1 | BV k−1 | EV k−1 | EV k−1].

The base case of our induction follows directly from our definition

of X
0
. Assume now that the equivalence between (5) and (6) holds

up to k and we will prove the equivalence for k + 1. We begin with

equation (5) and plug in the decomposition of Xk from (6):

Xk+1

= c
1
AXkB

T
+ c

2
AXkE

T
+ c

2
EXkB

T
+ c

3
EXkE

T

= c
1
AU kV

T
k B

T
+ c

2
AU kV

T
k E

T
+ c

2
EU kV

T
k B

T
+ c

3
EU kV

T
k E

T

= [c
1
AU k | c2EU k | c2AU k | c3EU k ][BV k | BV k | EV k | EV k ]

T

= U k+1V
T
k+1.

This form of the factorization is not yet helpful, because the

matrixU k is of dimension nA × 4
k
. To show that this is indeed a

rank k + 1 matrix, we show

Xk = SkCkT
T
k R

T
k

where:

Sk = [Aku | Ak−1e | . . . | Ae | e]

Rk = [Bkv | Bk−1e | . . . | Be | e]

Ck =

[
c
1
Ck−1 0 c

2
Ck−1 0

0T c
2
rTkCk−1 0T c

3
rTkCk−1

]

T k =

[
T k−1 T k−1 0 0
0T 0T hTkT k−1 hTkT k−1

]
.

In the above, 0 is the all zeros matrix or vector of appropriate size,

and e is the all ones vector. Also, C
0
= T

0
= 1, and rk and hk are

defined as follows:

rk = [ eTAk−1u eTAk−2e · · · eTA1e eTA0e ]
T

hk = [ eT Bk−1v eT Bk−2e · · · eT B1e eT B0e ]
T

with r
1
= [eTA0u] and h

1
= [eT B0v]. Note that this form gives the

rank k + 1 decomposition we desire because Sk and Rk both have

k + 1 columns.

To complete our derivation, we showU k = SkCk again using

induction. The base case k = 0 is immediate from a simple expan-

sion of the initial definitions, so assume that the result holds for up

to integer k . Then,

U k+1 = [c
1
AU k | c2EU k | c2AU k | c3EU k ]

= [AU k | EU k ]
[
c
1
I 0 c

2
I 0

0 c
2
I 0 c

3
I

]

= [ASkCk | ESkCk ]
[
c
1
I 0 c

2
I 0

0 c
2
I 0 c

3
I

]
.

Now, note that ASk = Sk+1
[
I
0T

]
and ESk = Sk+1

[
0

rTk+1

]
. Thus

U k+1 = Sk+1

[
I 0
0T rTk+1

] [
Ck 0
0 Ck

] [
c
1
I 0 c

2
I 0

0 c
2
I 0 c

3
I

]
= Sk+1Ck+1

Applying the same set of steps again will yield that V k = RkT k .

3.2 Three and Two Factor Decompositions
While this four factor decomposition is useful for revealing the rank

ofXk , we do not wish to work with matricesCk andT k in practice

since each has 4
k
columns. We now show that their product CkT

T
k

yields a simple-to-compute matrixW k of size (k + 1) × (k + 1),
giving us a three-factor decomposition (3FD):

Xk = SkW kRk .
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Input: A, B, u, v, c
1
, c

2
, c

3
, k

Output: ˆU and ˆV such that X k =
ˆU ˆV

T

Compute ˜U k ,
˜V k and save norms in a[1], . . . , a[k+1]; b[1], . . . , b[k+1].

Compute the terms necessary to build r
1
, . . . , rk and h

1
, . . . , hk .

Define vectors ai =
a[i+1]
a[1. . .i] for i = 1, . . . , k

Define vectors bi =
b[i+1]
b[1. . .i] for i = 1, . . . , k

Set ˜W
0
= a[1]b[1]

for i = 1 to k

Update ˜W i =

[
c
1

˜W i−1 c
2

˜W i−1 (bi ◦hi )

c
2
(ri ◦ai )

T ˜W i−1 c3 (ri ◦ai )
T ˜W i−1 (bi ◦hi )

]

end

Compute U W , SW ,V W = SVD( ˜W k ) and set D = S 1/2W
return ˆU = ˜U kU W D, ˆV = ˜V kV W D

Figure 2: The pseudocode of the algorithm to decompose
X into two low-rank matrices. Note that ◦ refers to the
element-wise Hadamard product between two vectors.

The matrixW k is defined iteratively by:

W k = CkT
T
k =

[
c
1
W k−1 c

2
W k−1hk

c
2
rTkW k−1 c

3
rTkW k−1hk

]
.

withW
0
= C

0
TT
0
= 1 · 1 = 1. This follows from multiplying Ck

withTTk together.

This decomposition is a step closer to our final goal but suffers

from poor scaling of numbers in the factors. Consequently, we can

remedy this by using scaling diagonal matrices in order to present

our final well-scaled three factor decomposition of Xk , which we

present as a summarizing theorem:

Theorem 3.1. If X
0
= uvT for vectors u ∈ RnA×1 and v ∈ RnB×1,

then the kth iteration of update (5) permits the following low-rank
factorization:

Xk =
˜U k

˜W k
˜V
T
k

where

˜U k =
[

Aku
∥Aku∥∞

Ak−1e
∥Ak−1e∥∞

. . . Ae
∥Ae∥∞

e
∥e∥∞

]

˜V k =
[

Bku
∥Bku∥∞

Bk−1e
∥Bk−1e∥∞

. . . Be
∥Be∥∞

e
∥e∥∞

]

˜W k = DuW kDv .

Here Du is a (k + 1) × (k + 1) diagonal matrix with diagonal entries
(∥Aku∥, ∥Ak−1e∥, . . . , ∥Ae∥, ∥e∥) and Dv is a diagonal matrix with
entries (∥Bkv∥, ∥Bk−1e∥, . . . , ∥Be∥, ∥e∥).

The diagonal matrices in Theorem (3.1) are designed specifically

to satisfy SkD
−1
u =

˜U k , RkD
−1
v =

˜V k , so the equivalence between

the scaled and unscaled three factor decompositions is straightfor-

ward. Note that the result is still unnormalized. However, we can

easily normalize in practice by scaling the matrix
˜W k as we see fit.

Note that when computing this decomposition in practice, we

do not simply construct S ,R, andW and then scale with Du and

Dv . Instead, we form the scaled factors recursively by noting the

similarities between each factor at step k and the corresponding

factor at step k + 1. A pseudo-code for our implementation that

directly computes these is shown in Figure 2.

As we shall see in the next section, we would ultimately like

to express Xk in terms of a just a left and a right low-rank factor

in order to apply our techniques for low-rank bipartite matching.

It is preferable for our purposes to produce two factors that have

roughly equal scaling, so we accomplish this by factorizing
˜W k

using an SVD decomposition and splitting the pieces of
˜W k into

the left and right terms. The last steps of the Figure 2 accomplish

this goal.

4 LOW RANK MATCHING
In this section, we consider the problem of solving a maximum

weight bipartite matching problem on a low rank matrix with a use-

ful a-posteriori approximation guarantee. In our network alignment

routine, our algorithm will be used on the low-rank matrix from

Figure 2. In this section, however, we proceed in terms of a general

matrix Y with low rank factors Y = UVT
. The matrix Y repre-

sents the edge-weights of a bipartite graph, and so the max-weight

matching problem is:

maximize

M
M •Y

subject to Mi,j ∈ {0,1}∑
i Mi,j ≤ 1 for all j,

∑
i j Mi,j ≤ 1 for all i,

(7)

where • is the matrix inner-product (see (4)). TheMi,j entries repre-

sent a match between node i on one side of the bipartite graph and

node j on the other side. We call anyM that satisfies the matching

constraints a matching matrix.

4.1 Optimal Matching on a Rank 1 Matrix
We begin by considering optimal matchings for a rank-1 matrix

Y = uvT where u,v ∈ Rn (these results are easily adapted for

vectors of different lengths).

Case 1: u,v ∈ Rn≥0 or u,v ∈ R
n
≤0 . If u and v contain only non-

negative entries, or both contain only non-positive entries, the

procedure for finding the optimal matching is the same: we order

the entries of both vectors by magnitude and pair up elements as

they appear in the sorted list. If any pair contributes a 0 weight,

we do not bother to match that pair since it doesn’t improve the

overall matching score. The optimality of this matching for these

special cases can be seen as a direct result of the rearrangement

inequality.

Case 2: General u,v ∈ Rn . If u and v have entries that can be

positive, negative, or zero, we require a slightly more sophisticated

method for finding the optimal matching on Y . In this case, define

˜Y to be the matrix obtained by copying Y and deleting all negative

entries. To find the optimal matching of Y we would never pair

elements giving a negative weight, so the optimal matching for
˜Y

is the same as for Y . Now let u+ and u− be the vectors that contain
the strictly positive and negative elements in u respectively, and

define v+, and v− similarly for v. Then,
˜Y = ˜Y

1
+ ˜Y

2

where
˜Y
1
= u+v

T
+ and

˜Y
2
= u−v

T
− . LetM1

andM
2
be the optimal

matching matrices for
˜Y
1
and

˜Y
2
respectively, obtained using the

sorting techniques for case 1. Since u+,u−,v+ and v− will contain
some entries that are zero, both M

1
and M

2
may leave certain

nodes unmatched. The following lemma shows that combining

these matchings yields the optimal result for
˜Y :
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Lemma 4.1. The set of nodes matched byM
1
will be disjoint from

the set of nodes matched byM
2
. The matching ˜M defined by combin-

ing these two matchings will be optimal for Y .

Proof. Wewill prove by contradiction that there are no conflicts

betweenM
1
andM

2
. Assume thatM

1
contains the match (i, j ) and

M
2
contains a conflicting match (i,k ). SinceM

1
contains the match

(i, j ), ˜Y
1
(i, j ) must be nonzero, implying that u+ (i ) and v+ (j ) are

both positive. Similarly, M
2
contains the pair (i,k ), so u− (i ) and

v− (k ) are both negative. This is a contradiction, since at least one

of u+ (i ) and u− (i ) must be zero.

We just need to show that M̃ is an optimal matching for Y . If
this were not the case, there would exist some matching M such

thatM • ˜Y > ˜M • ˜Y . If such anM existed, we would have that

M • ˜Y
1
+M • ˜Y

2
> ˜M • ˜Y

1
+ ˜M • ˜Y

2

However,
˜M • ˜Y

1
= M

1
• ˜Y

1
≥ M • ˜Y

1
, and

˜M • ˜Y
2
= M

2
• ˜Y

2
≥

M • ˜Y
2
. Thus, a contradiction;

˜M is an optimal matching of
˜Y . □

4.2 Matchings on Low Rank Factors
Now we address the problem of finding a good matching for a

matrix Y = UVT
, where Y ∈ Rm×n , U ∈ Rm×k , and V ∈ Rn×k .

Let ui and vi be the ith columns in U and V , and let Y i = uiv
T
i ,

then Y =
∑k
i=1Y i .

We can find the optimal matching on each Y i using the results

from Section 4.1. Let Mi be the matching matrix corresponding

to Y i , and let M∗ be a matching matrix that achieves an optimal

maximum weight on Y . Note thatM∗ •Y i ≤ Mi •Y i , and thus,

M∗ •Y ≤
∑k
i=1Mi •Y i . (8)

To analyze how good of a matching eachMi is on the entire matrix

Y , define the following terms:

di,j =
M i•Y i
M j•Y i

dj = max

i
di,j D = min

j
dj (9)

and let j∗ = argminj dj , i.e. D = dj∗ . Note that for any fixed indices

i, j , we have di,j ≤ dj . Applying this to j = j∗ we have that for all i ,

M i•Y i
M j∗•Y i

= di,j∗ ≤ dj∗ = D =⇒ Mi •Y i ≤ D (M j∗ •Y i ) (10)

By combining (8) and (10) we have the following result.

Theorem 4.2. We can achieve a D-approximation for the bipartite
matching problem by selecting an optimal matching for one of the
low-rank factors of Y .

Proof. M∗•Y ≤
∑k
i=1Mi•Y i ≤

∑k
i=1 DM j∗•Y i = D (M j∗•Y ). □

This procedure (Figure 3) runs in O (k2n + kn logn) where k is

the rank, and U and V have O (n) rows. The space requirement

is O (nk ). In practice, the approximation factors D are less than

1.1 for our problems (see Figure 7). Figure 3 shows pseudocode to

implement this matching algorithm.

Input: U ,V such that Y = U V T

Output: Approximate max -weight matching M , approx value D
Find optimal matching Mi for each rank -1 matrix (see §4.1)

Evaluate the weight of the matching vi = Mi • Y i
Compute di,j = vi /(M j • Y i ) for all i,j = {1, . . . , k }
Evaluate dj = max

i
di,j , D = minimum(dj ), j∗ = argmin(dj )

return M = M j∗ , D

Figure 3: Pseudocode for finding a D-approximate matching
from a low rank matrix.

4.3 Improved practical variations
Ourmethod (Figure 3) can be improvedwithout substantially chang-

ing its runtime or memory requirement. The key idea is to create

a sparse max-weight bipartite matching problem that include the

matchingM j∗ and other helpful edges. By optimally solving these,

we will only improve the approximation. These incur the cost of

solving those problems optimally, but sparse max-weight matching

solvers are practical and fast for problems with millions of edges.

Union of matchings. The simplest improvement is to create a

sparse graph based on the full set of matchesM
1
, . . . ,Mk . We can

do this by transforming the complete bipartite network defined by

Y into a sparsified network
ˆY where edge (j,k ) is nonzero with

weight Y j,k only if nodes (j,k ) were matched by someMi . Then,

we solve a maximum bipartite matching problem on the sparse

matrix
ˆY with O (nk ) non-zeros or edges. This only improves the

approximation because we included the matchingM j∗ .

Expanding non-matchings on rank-1 factors. Since algo-

rithm 3 relies on a sorting procedure when buildingMi from the

rank-1 factors, and since these numbers may very likely be close to

each other, we can choose to expand the set of possible matchings

and let each node pair up with c closest values to it. By way of

example, if c = 3 and we had sorted indices

sorted u: i
1
i
2
i
3
i
4
i
5

sorted v: j
1
j
2
j
3
j
4
j
5

then we

add edges

(i
1
, j
1
) (i

1
, j
2
)

(i
2
, j
1
) (i

2
, j
2
) (i

2
, j
3
)

(i
3
, j
2
) . . .

We add all these edges to the sparse matrix
ˆY with their true values

from Y and solve a maximum bipartite matching problem on the

resulting matrix. Again, this includes all edges from M j∗ . After

adding all the edges from set ui ,vi , the final number of edges is

O (kcn), and thus, the resulting union of matchings matrix is a

sparse matrix when kc is o(n).

5 EXPERIMENTS
To evaluate our method, we first study the relationship between

Low Rank EigenAlign and the original EigenAlign algorithm. The

goal of these initial experiments is to show (i) that we need about

8 iterations, which gives a rank 9 matrix, to get equivalent results

to EigenAlign (Figure 4), (ii) our method performs the same over

a variety of graph models (Figure 5), (iii) the method scales bet-

ter (Figure 6), and (iv) the computed approximation bounds are

better than 1.1 (Figure 7). We also compare against other scalable

techniques in Figure 8, and see that our approach is the best. Next,

we use a test-set of networks with known alignments from biol-

ogy [28] to evaluate our algorithms (Section 5.2). Finally, we end
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our experiments with a study on a collaboration network where

we seek to align vertex neighborhoods (Section 5.3).

Our low-rank EigenAlign In all of these experiments, our low-

rank techniques use the expanded matching with c = 3 (Section 4.3)

and set the initial rank-1 factors to be all uniform: v = e,u = e.
Let α = 1 +

nnz(A)nnz(B )
nnz(A) (n2

B−nnz(B ))+nnz(B ) (n
2

A−nnz(A))
. This equals one

plus the ratio of possible overlaps divided by possible conflicts. Let

γ = 0.001, then sO = α + γ ,sN = 1 + γ ,sC = γ . These parameters

correspond to those used in [5] as well. Finally, we set the number

of iterations to be 8 for all experiments except those where we

explicitly vary the number of iterations.

Theoretical runtime. When we combine our low-rank com-

putation and the subsequent expanded low-rank matching, the

runtime of our method is

O ( nk2︸︷︷︸
low-rank factors

compute di j

+ k3︸︷︷︸
SVD

+kn logn︸   ︷︷   ︸
sorting

+matching with ckn edges)

andO (nck )memory. (Note thatk = 8 and c = 3 in our experiments.)

EigenAlign baseline. For EigenAlign, we use the same set of

parameters sO ,sN ,sC and use the power method with starting with

the all ones vector. We run the power method with normalization

as described in (5) until we reach an eigenvalue-eigenvector pair

that achieves a residual value 10
−12

. This usually occurs after a

15-20 iterations.

5.1 Erdős-Rényi and preferential attachment
The goal of our first experiment is to assess the performance of

our method compared to EigenAlign. These experiments are all

done with respect to synthetic problems with a known alignment

between the graphs. The metric we use to assess the performance

is recovery [5], where we want large recovery values. Recovery is

between 0 and 1 and is defined

recovery(M ) = 1 − 1

2n ∥M −M true
∥F . (11)

In words, recovery is the fraction of correct alignments.

Graph models. To generate the starting undirected network in

the problem (GA), we use either Erdős-Rényi with average degree

ρ (where the edge probability is ρ/n) or preferential attachment

with a random 6-node initial graph and adding θ edges with each

vertex.

Noise Model. Given a networkGA, we add some noise to gener-

ate our second networkGB [5]. With probability pe
1

, we remove an

edge, and with probability pe
2

we add an edge. Then, algebraically,

B can be written as A ◦ (1 − Q
1
) + (1 − A) ◦ Q

2
, where Q

1
and

Q
2
are undirected Erdős-Rényi graphs with density pe

1

and pe
2

respectively and ◦ is the Hadamard (element-wise) product. We fix

pe
2

= ppe
1

/(1 − p) where p is the density ofGA. Because some al-

gorithms have a bias in the presence of multiple possible solutions,

after B is generated, we relabel the nodes in B in reverse order.

Eight iterations are enough. We first study the change in

results with the number of iterations. We use Erdős-Rényi graphs

with average degree 20 and analyze the performance of our method

as iterations vary. Figure 4 shows the recovery (left) and overlap

(right) relative to the EigenAlign result so a value of 1.0 means the

same number as EigenAlign. After 8 iterations, the recovery stops

Overlapped edges relative to EigenAlign. Recovery results relative to EigenAlign.

Figure 4: At left, the number of overlapped edges in the
alignment computed by our low-rank method relative to
EigenAlign’s alignment. A value of 1.0means that we get the
same number as EigenAlign’s solution. At right, the same
ratio but with respect to the recovery. The recovery results
stop improving after around 8 iterations, so we fix this value
in the rest of our experiments.

increasing, and so we perform the rest of our experiments with

only 8 iterations.

Our Low-rank EigenAlign matches EigenAlign for Erdős-
Rényi and preferential attachment. We next test a variety of

graphs as the noise levelpe
1

varies. For these experiments, we create

Erdős-Rényi graphs with average degree 5 and 20 and preferential

attachment graphs with θ = 4 and θ = 6 for graphs with 50 nodes.

Figure 5 shows these results in terms of the recovery of the true

alignment. In the figure, the experimental results over 200 trials are

essentially indistinguishable.

Our low-rankmethod is farmore scalable.Wenext consider

what happens to the runtime of the two algorithms as the graphs

get larger. Figure 6 shows these results where we let each method

run up to two minutes. We look at preferential attachment graphs

with θ = 4 and pe
1

= 0.5/n. EigenAlign requires a little more than

two minutes to solve a problem of size 1000, whereas our low rank

formulation can solve a problem that is an order of magnitude

bigger in the same amount of time.

Our matching approximations are high quality. We also

evaluate the effectiveness of our D-approximation computed in

Section 4.2. Here, we compare the computed bound D we get to

the actual approximation value of our algorithm and to the actual

approximation ration of a greedy matching algorithm. The greedy

algorithm can be implemented in a memory scalable fashion with a

O (n3) runtime (orO (n2 logn) with quadratic memory) and guaran-

tees a 2-approximation whereas our D value gives better theoretical

bounds. Figure 7 shows these results. Our guaranteed approxima-

tion factors are always less than 1.1 when the low-rank factors

arise from the problems in Figure 6. Surprisingly, greedy matching

does exceptionally well in terms of approximation, prompting our

next experiment.

Our matching greatly outperforms greedy matching and
other low-rank techniques. NSD [8] is another network align-

ment algorithm which solves the network alignment problem via

low-rank factors. In the previous experiment, we saw that greedy
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Erdős-Rényi, avg. deg. 5 Erdős-Rényi, avg. deg. 20

Preferential attachment θ = 4 Preferential attachment θ = 6

Figure 5: Thick lines are the median recovery fractions over
200 trials and dashed lines are the 20th and 80th percentiles.
These figures show that there appears to be small and likely
insignificant differences between the alignment quality of
EigenAlign and our low rank method.

matching consistently gave better than expected approximation

ratios. Here, we compare the low-rank EigenAlign formulations

with our low-rank matching scheme to greedy matching in terms of

recovery. The results are shown in Figure 8 and show that the low-

rank EigenAlign strategy with our low-rank matching outperforms

the other scalable alternatives.

5.2 Biological networks
TheMultiMagna dataset is a test case in bioinformatics that involves

network alignment [19, 28]. It consists of a base yeast network

that has been modified in different ways to produce five related

networks, which we can think of as different edge sets on the

same set of 1004 nodes. This results in 15 pairs of networks to

align (6 choose 2). One unique aspect of this data is that there

is no side information provided to guide the alignment process,

which is exactly where our methods are most useful. In Figure 9,

we show results for aligning MultiMagna networks using low-rank

EigenAlign, EigenAlign , belief propagation (BP) [2], and Klau’s

method [7] in terms of two biologically relevant measures:

F-Node Correctness (F-NC). This is the F-score (harmonic

mean) of the precision and recall of the alignment.

NCV-Generalized S3. This shows how well the network struc-

ture correlates. Let M be a matching matrix for graphs with nA
and nB nodes. The node coverage value of an alignment is NCV =

2nnz(M )/(nA + nB ), where nnz(M ) counts the number of nonzero

Figure 6: These show the av-
erage time over 10 trials. The
dashed line is the time re-
quired for the matching step.
The time required for Eigen-
Align is an order of magni-
tude larger than our low-rank
formulation. Our low rank
EigenAlign solves 10,000 node
problems in about two min-
utes whereas EigenAlign re-
quires the same amount of
time to solve a 1000 node prob-
lem.

Figure 7: Over the experi-
ments from Figure 6, the top
figure shows the guaranteed
D-approximation value com-
puted by our algorithm. The
bound appears to be strong
and gives a better-than 1.1 ap-
proximation. The middle fig-
ure shows the true approxi-
mation value after solving the
optimal matching using Low-
rank EigenAlign (LR), and
the bottom figure shows the
true approximation value for
a greedy matching (GM) strat-
egy, which guarantees a 2-
approximation.

Figure 8: Recovery scores
achieved by Low Rank Eigen-
Align and NSD [8]. We use
a greedy matching (GM)
and our low rank matching
algorithm (LR) on the low
rank factors of the similarity
matrix from both algorithms.

entries inM . Let EO be the set of overlapping edges for an alignment

M and EC be the set of conflicts, and define GS3 = |EO |/( |EO | +
|EC |). The NCV-GS3 score is the geometric mean of NCV and GS3.

In this experiment, we find that standard network alignment

algorithms (BP and Klau) perform dreadfully (F-NC) without any

guidance about which nodes might be good matches. Towards that

end, we can take the output from our expanded matchings from the

low-rank factors and run the Klau and BP methods on this restricted
set of matchings. This enables them to run in a reasonable amount

of time with improved results. The idea here is that we are treating

Klau and BP as the matching algorithm rather than using bipartite
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Figure 9: These are violin plots over the results of 15 prob-
lems. Klau and BP are strong algorithms for network align-
ment but they only performwell when given a sparsified set
of possiblematches from our expanded low-rankmatchings
(LR+BP, LR+Klau). Larger scores are better.

Table 1: Time required formethods on theMultiMagna data.

Algorithm Time (sec)

min median max

LR 1.9553 2.1971 2.9173

EA 83.6777 96.9938 194.363

BP 1985.2 2216.3 2744.3

Klau 3031.4 3856.0 4590.2

LR+BP 174.06 182.58 190.44

LR+Klau 257.59 301.86 318.83

matching for this step. This picks a matching that also yields a

good alignment. Our results are comparable with the results in [19],

which is a recent paper that uses a number of other algorithms

on the same data. The timing results from these experiments are

shown in Table 1.

5.3 Collaboration network
We now use Low Rank EigenAlign to perform a study on a collab-

oration network to understand what would be possible in terms

of a fully anonymized network problem. We show that we could

use our network alignment technique to identify edges where the

endpoints have a high Jaccard similarity. We do so by aligning the

node neighborhoods of each of the end points of each edge and

observe that a high overlap implies a high Jaccard similarity score.

In more detail, recall that the Jaccard similarity of two nodes (a

and b) is defined as
|N (a)∩N (b ) |
|N (a)∪N (b ) | , where N (a) are the neighboring

nodes of a. The vertex neighborhood of node a is the induced

subgraph of the node and all of its neighbors. Given an edge (i, j ),
we then compute the Jaccard similarity between i and j, and also

Figure 10: The edge overlap
(normalized so themaximum
value is 1.0) of alignments be-
tween vertex neighborhoods
of nodes in the DBLP dataset.
This shows that the Jaccard
score of two connected nodes
in the network is correlated
to the overlap size.

align the vertex neighborhood of i to the vertex neighborhood of j
using our technique.

We use the DBLP collaboration network from [4] and consider

pairs of nodes that have a sufficiently big neighborhood and are

connected by an edge. Specifically, we consider nodes that have

100 or more neighbors. In total, we end up with 15187 such pairs.

This is an easy experiment with our fast codes and it takes less than

five minutes. The results are in Figure 10. We score the network

alignments in terms of normalized overlap, which is the number

of overlapped edges to the maximum possible number for a pair

of neighborhoods. What we observe is that large Jaccard similari-

ties and large overlap scores are equivalent. This means we could
have identified these results without any information on the actual

identity of the vertices.

6 CONCLUSION & DISCUSSION
The low-rank spectral network alignment framework we introduce

here offers a number of exciting possibilities in new uses of network

alignment methods. First, it enables a new level of high-quality

results with a scalable, principled method as illustrated by our

experiments. This is because it has near-linear runtime and memory

requirements in the size of the input networks. Second, in the course

of this application, we developed a novel matching routine with

high-quality a-posteriori approximation guarantees that will likely

be useful in other areas as well.

That said, there are a number of areas that merit further explo-

ration. First, the resulting low-rank factorization uses the matrix

Sk , which is related to graph diffusions. There are results in compu-

tational geometry that prove rigorous results about using diffusions

to align manifolds [23]. There are likely to be useful connections to

further explore here. Second, there are strong relationships between

our low-rank methods and fast algorithms for Sylvester and multi-

term matrix equations [26] of the formC
1
XD

1
+C

2
XD

2
+ · · · = F .

These connections offer new possibilities to improve our methods.
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